
665

This appendix contains a detailed introduction to number systems and their under-
lying characteristics. The particular focus is on the binary number system, its use 
with computers, and its similarities to other number systems. This introduction 
also covers conversions between bases.

In our everyday lives, we use the decimal number system to represent values, 
to count, and to perform arithmetic. The decimal system is also referred to as the 
base-10 number system. We use 10 digits (0 through 9) to represent values in the 
decimal system.

Computers use the binary number system to store and manage information. 
The binary system, also called the base-2 number system, has only two digits (0 
and 1). Each 0 and 1 is called a bit, short for binary digit. A series of bits is called 
a binary string.

There is nothing particularly special about either the binary or decimal systems. 
Long ago, humans adopted the decimal number system probably because we have 
10 fingers on our hands. If humans had 12 fingers, we would probably be using 
a base-12 number system regularly and find it as easy to deal with as we do the 
decimal system now. It all depends on what you get used to. As you explore the 
binary system, it will become more familiar and natural.

Binary is used for computer processing because the devices used to manage and 
store information are less expensive and more reliable if they have to represent 
only two possible values. Computers have been made that use the decimal system, 
but they are not as convenient.

There are an infinite number of number systems, and they all follow the same 
basic rules. You already know how the binary number system works, but you just 
might not be aware that you do. It all goes back to the basic rules of arithmetic.

Place Value
In decimal, we represent the values of 0 through 9 using only one digit. To rep-
resent any value higher than 9, we must use more than one digit. The position of 
each digit has a place value that indicates the amount it contributes to the overall 
value. In decimal, we refer to the one’s column, the ten’s column, the hundred’s 
column, and so on forever.
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Each place value is determined by the base of the number system, raised to 
increasing powers as we move from right to left. In the decimal number system, 
the place value of the digit furthest to the right is 100, or 1. The place value of the 
next digit is 101, or 10. The place value of the third digit from the right is 102, or 
100, and so on. Figure B.1 shows how each digit in a decimal number contributes 
to the value.

The binary system works the same way except that we exhaust the available 
digits much sooner. We can represent 0 and 1 with a single bit, but to represent 
any value higher than 1, we must use multiple bits.

The place values in binary are determined by increasing powers of the base as 
we move right to left, just as they are in the decimal system. However, in binary, 
the base value is 2. Therefore the place value of the bit furthest to the right is 20, 
or 1. The place value of the next bit is 21, or 2. The place value of the third bit 
from the right is 22, or 4, and so on. Figure B.2 shows a binary number and its 
place values.

The number 1101 is a valid binary number, but it is also a valid decimal num-
ber as well. Sometimes to make it clear which number system is being used, the 

FIGURE B.1 Place values in the decimal system
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FIGURE B.2 Place values in the binary system
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base value is appended as a subscript to the end of a number. Therefore you can 
distinguish between 11012, which is equivalent to 13 in decimal, and 110110 (one 
thousand, one hundred and one), which in binary is represented as 100010011012.

A number system with base N has N digits (0 through N−1). As we have seen, 
the decimal system has 10 digits (0 through 9), and the binary system has two 
digits (0 and 1). They all work the same way. For instance, the base-5 number 
system has five digits (0 to 4).

Note that, in any number system, the place value of the digit furthest to the 
right is 1, since any base raised to the zero power is 1. Also notice that the value 
10, which we refer to as “ten” in the decimal system, always represents the base 
value in any number system. In base 10, 10 is one 10 and zero 1’s. In base 2, 10 
is one 2 and zero 1’s. In base 5, 10 is one 5 and zero 1’s.

Bases Higher Than 10
Since all number systems with base N have N digits, then base 16 has 16 digits. 
But what are they? We are used to the digits 0 through 9, but in bases higher than 
10, we need a single digit, a single symbol, that represents the decimal value 10. 
In fact, in base 16, which is also called hexadecimal, we need digits that represent 
the decimal values 10 through 15.

For number systems higher than 10, we use alphabetic characters as single digits 
for values greater than 9. The hexadecimal digits are 0 through F, where 0 through 9 
represent the first 10 digits, and A represents the decimal value 10, B represents 11, C 
represents 12, D represents 13, E represents 14, and F represents 15.

Therefore the number 2A8E is a valid hexadecimal number. The place values 
are determined as they are for decimal and binary, using increasing powers of the 
base. So in hexadecimal, the place values are powers of 16. Figure B.3 shows how 
the place values of the hexadecimal number 2A8E contribute to the overall value.

FIGURE B.3 Place values in the hexadecimal system
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All number systems with bases greater than 10 use letters as digits. For exam-
ple, base 12 has the digits 0 through B and base 19 has the digits 0 through I. 
However, beyond having a different set of digits and a different base, the rules 
governing each number system are the same.

Keep in mind that when we change number systems, we are simply changing 
the way we represent values, not the values themselves. If you have 1810 pencils, 
it may be written as 10010 in binary or as 12 in hexadecimal, but it is still the 
same number of pencils.

Figure B.4 shows the representations of the decimal values 0 through 20 in 
several bases, including base 8, which is also called octal. Note that the larger the 
base, the higher the value that can be represented in a single digit.

FIGURE B.4 Counting in various number systems
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Conversions
We’ve already seen how a number in another base is converted to decimal by 
determining the place value of each digit and computing the result. This process 
can be used to convert any number in any base to its equivalent value in base 10.

Now let’s reverse the process, converting a base-10 value to another base. First, 
find the highest place value in the new number system that is less than or equal to 
the original value. Then divide the original number by that place value to deter-
mine the digit that belongs in that position. The remainder is the value that must 
be represented in the remaining digit positions. Continue this process, position by 
position, until the entire value is represented.

For example, Figure B.5 shows the process of converting the decimal value 
180 into binary. The highest place value in binary that is less than or equal to 
180 is 128 (or 27), which is the eighth bit position from the right. Dividing 180 
by 128 yields 1 with 52 remaining. Therefore the first bit is 1, and the decimal 
value 52 must be represented in the remaining seven bits. Dividing 52 by 64, 
which is the next place value (26), yields 0 with 52 remaining. So the second bit 
is 0. Dividing 52 by 32 yields 1 with 20 remaining. So the third bit is 1, and the 
remaining five bits must represent the value 20. Dividing 20 by 16 yields 1 with 
4 remaining. Dividing 4 by 8 yields 0 with 4 remaining. Dividing 4 by 4 yields 1 
with 0 remaining.

Since the number has been completely represented, the rest of the bits are zero. 
Therefore 18010 is equivalent to 10110100 in binary. This can be confirmed by 

FIGURE B.5 Converting a decimal value into binary
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converting the new binary number back to decimal to make sure we get the origi-
nal value.

This process works to convert any decimal value to any target base. For each 
target base, the place values and possible digits change. If you start with the cor-
rect place value, each division operation will yield a valid digit in the new base.

In the example in Figure B.5, the only digits that could have resulted from each 
division operation would have been 1 or 0, since we were converting to binary. 
However, when we are converting to other bases, any valid digit in the new base 
could result. For example, Figure B.6 shows the process of converting the decimal 
value 1967 into hexadecimal.

The place value of 256, which is 162, is the highest place value less than or 
equal to the original number, since the next highest place value is 163 or 4096. 
Dividing 1967 by 256 yields 7 with 175 remaining. Dividing 175 by 16 yields 
10 with 15 remaining. Remember that 10 in decimal can be represented as the 
single digit A in hexadecimal. The 15 remaining can be represented as the digit F. 
Therefore 196710 is equivalent to 7AF in hexadecimal.

Shortcut Conversions
We have established techniques for converting any value in any base to 

its equivalent representation in base 10, and from base 10 to any other base. 
Therefore. you can now convert a number in any base to any other base by going 
through base 10. However, an interesting relationship exists between the bases 
that are powers of 2, such as binary, octal, and hexadecimal, which allows very 
quick conversions between them.

To convert from binary to hexadecimal, for instance, you can simply group the 
bits of the original value into groups of four, starting from the right, then convert 
each group of four into a single hexadecimal digit. The example in Figure B.7 
demonstrates this process.

FIGURE B.6 Converting a decimal value into hexadecimal
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To go from hexadecimal to binary, we reverse this process, expanding each 
hexadecimal digit into four binary digits. Note that you may have to add lead-
ing zeros to the binary version of each expanded hexadecimal digit if necessary 
to make four binary digits. Figure B.8 shows the conversion of the hexadecimal 
value 40C6 to binary.

Why do we section the bits into groups of four when converting from binary 
to hexadecimal? The shortcut conversions work between binary and any base that 
is a power of 2. We section the bits into groups of that power. Since 24 = 16, we 
section the bits in groups of four.

Converting from binary to octal is the same process except that the bits are 
sectioned into groups of three, since 23 = 8. Likewise, when converting from octal 
to binary, we expand each octal digit into three bits.

To convert between, say, hexadecimal and octal is now a process of doing two 
shortcut conversions. First convert from hexadecimal to binary, then take that 
result and perform a shortcut conversion from binary to octal.

By the way, these types of shortcut conversions can be performed between any 
base B and any base that is a power of B. For example, conversions between base 
3 and base 9 can be accomplished using the shortcut grouping technique, section-
ing or expanding digits into groups of two, since 32 = 9.

FIGURE B.7 Shortcut conversion from binary to hexadecimal
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FIGURE B.8 Shortcut conversion from hexadecimal to binary
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